
SPARROW Modelling: A Tool to Address Water Quality Issues in the International Red-Assiniboine River Basin

Glenn Benoy (IJC), Wayne Jenkinson (IJC), Dale Roberson (USGS), and Dave Saad (USGS)

Red River Basin Commission Conference

January 2016 Grand Forks, ND

National Research Council Canada Conseil national de recherches Canada

Presentation Outline

- * A Short History of the IJC...
- The IJC's International Watersheds Initiative and Water Quality Modelling
- Nutrient Enrichment and Eutrophication in the Red-Assiniboine River Basin
- * The SPARROW Water Quality Model
- Red-Assiniboine Model Output and the Mapper (Online Tool)
- * What's Next for Red-Assiniboine SPARROW Modelling?

Mandate and History of the International Joint Commission

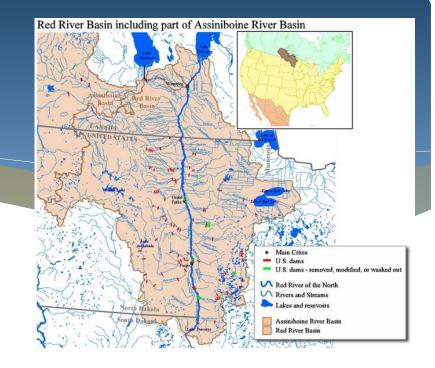
Turn of the 20th century disputes:

- Apportionment of water for irrigation in the St. Mary and Milk rivers
- Sewage and manufacturing wastes that led to outbreaks of cholera among other water-borne public health problems

Mandate and History of the International Joint Commission

Role of the IJC

- Regulating shared water uses
- Investigating transboundary issues and recommending solutions
- The IJC is guided by the Boundary Waters Treaty of 1909
 - Includes the requirement "that neither country should cause water pollution in its water which will cause injury to health or property in the other country" (Article IV, section 2)
 - One of the earliest proactive and continuous references to water pollution in the world



Boards of the IJC

International Souris River Board

 "Mandate...to prevent and resolve transboundary disputes and ensure a more eco-systemic approach to transboundary water issues, compliance for apportionment of river flows, and oversight of flood operations"

International Red River Board

- "Mandate...to prevent and resolve transboundary disputes regarding the waters and aquatic ecosystem of the Red River and its tributaries and aquifers"
- "Activities shall focus on...water quality, water quantity and levels, and aquatic ecological integrity"

The International Watersheds Initiative and Water Quality Modelling

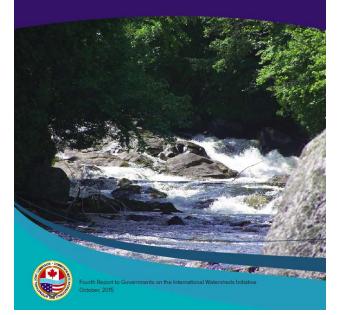
Water

Quality

"The IWI is guided by an integrated, ecosystem approach that recognizes the complex interrelationships in the entire watershed."

Major initiatives and activities

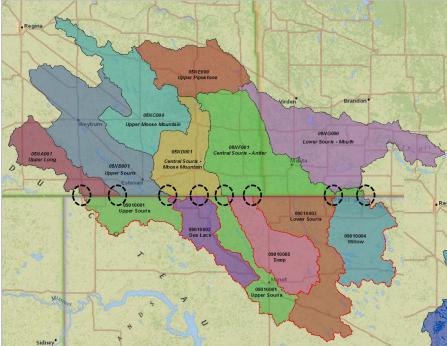
 Hydrographic and Geospatial Data Harmonization Task Force


Binational Water Quality Modelling

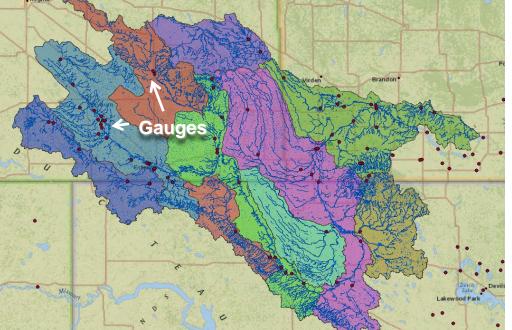
Hydrologic

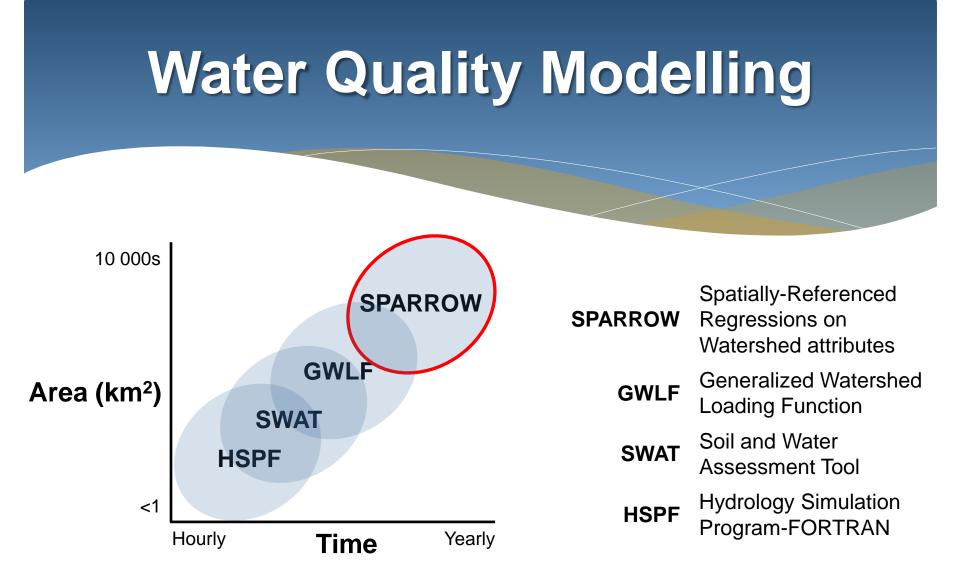
THE INTERNATIONAL WATERSHEDS INITIATIVE:

From Concept to Cornerstone of the International Joint Commission


A watershed approach for coordinated stewardship of shared Canada-U.S. waters

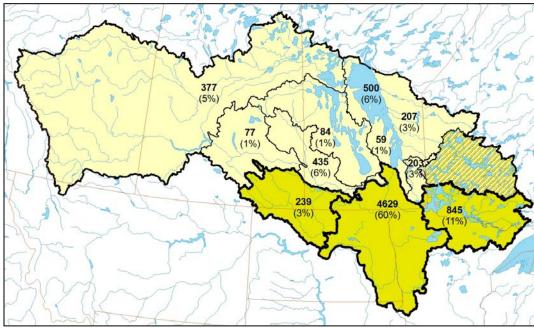
Ecological


Hydraulic


Data Harmonization Souris River Basin (ND, MB, SK)

Harmonized Basin and Sub-basins

Pre-harmonization (NHN-NHD)



Nutrient Enrichment and Eutrophication in the Red-Assiniboine River Basin

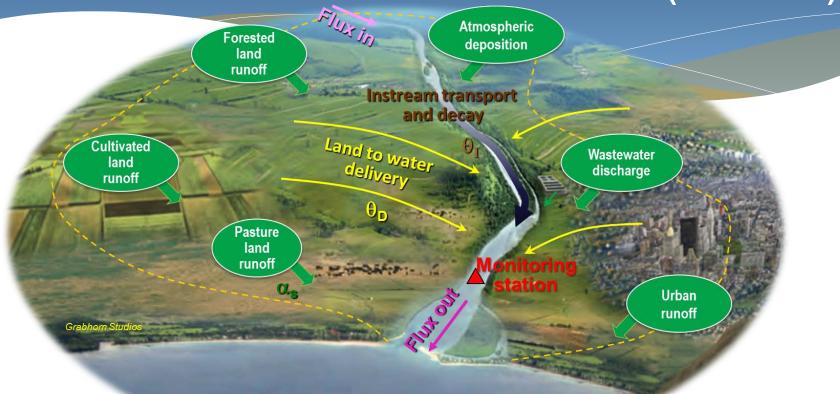
Increasing frequency and severity of algal blooms in Lake Winnipeg and in lakes and reservoirs across the international Red and Souris River watersheds

Average Total Phosphorus Load (tonnes per year (per cent contribution))

Pelican Lake. Pembina River watershed

Buffalo Red watershed

10

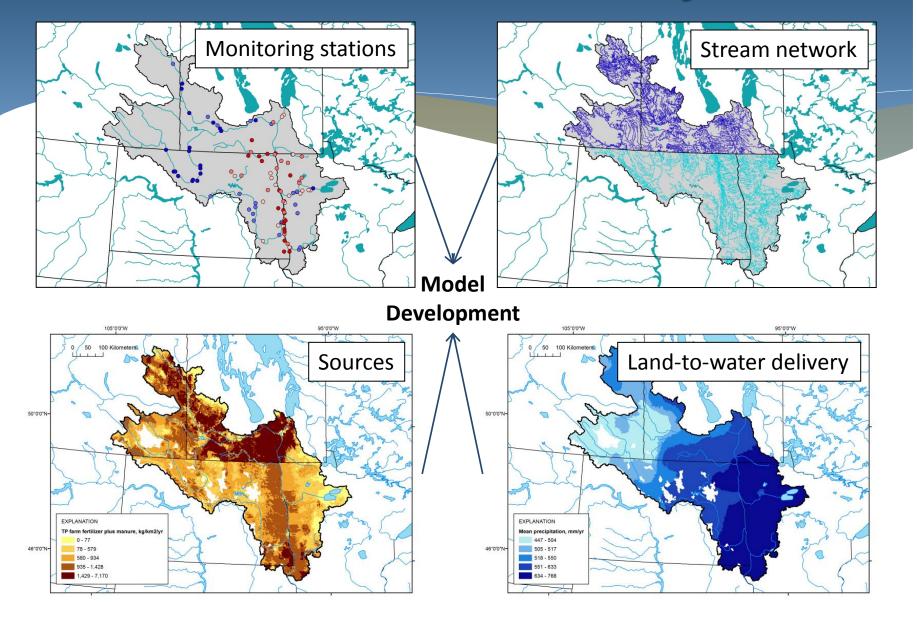

Eutrophication A Water Quality Issue Across the Transboundary

Driving forces and pressures

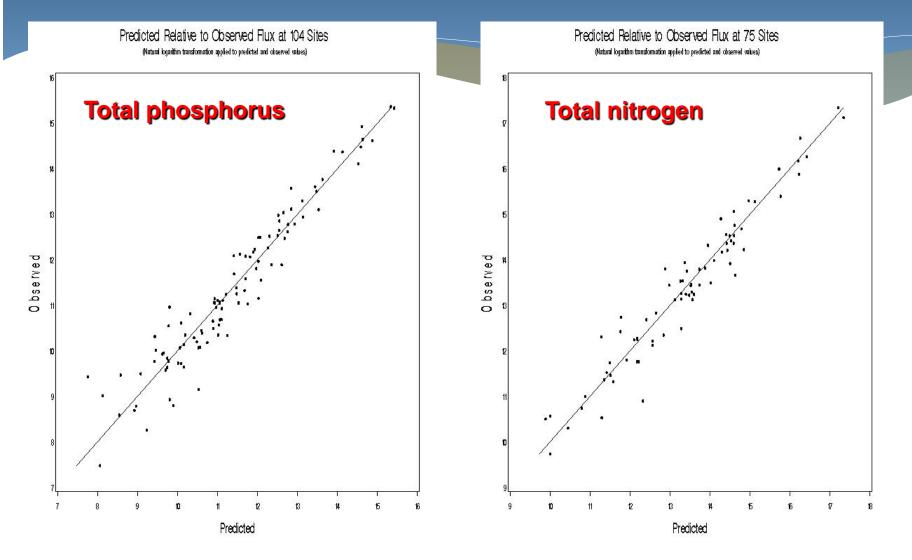
- * Farm policy and the intensification of agriculture
 - * Fertilizer and manure applications in cropping systems
 - * Livestock operations (Concentrated Animal Feeding Operations, CAFOs)
- Landscape hardening (impervious surfaces, soil organic matter and permeability, wetlands)
- * Aging urban and rural infrastructure
- Climate change and altered temperature and precipitation regimes
- * Historical legacy of human activities (e.g. sediment burial)

The SPARROW Water Quality Model

Binational Water Quality Modelling SPAtially-Referenced Regressions On Watershed attributes (SPARROW)



SPARROW relates **long-term trends in water quality** to **large-scale descriptors** of human activities, climate, hydrology, geology and physiography AND land-to-water and instream decay **delivery processes**


SPARROW Modelling Team – Multidisciplinary and Multi-agency

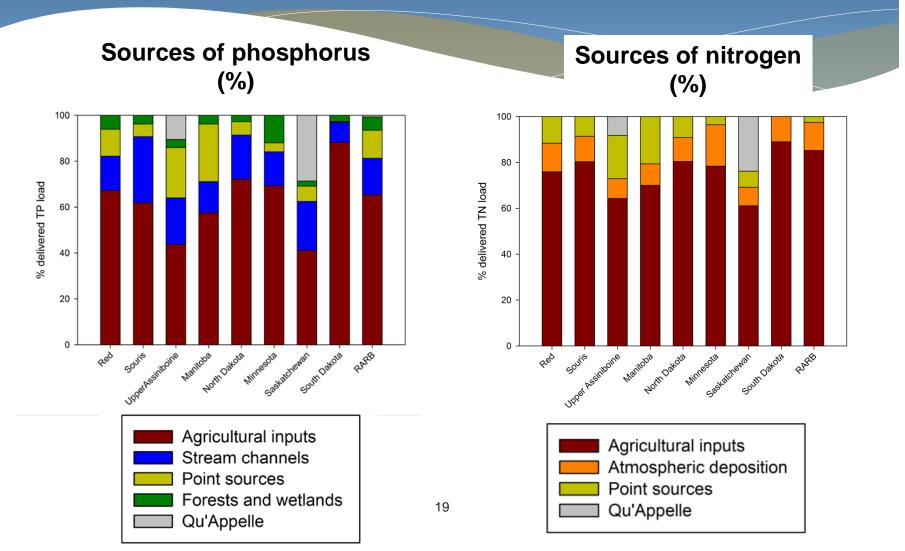
Agency	Contributors
International Joint Commission	Glenn Benoy, Wayne Jenkinson, Mike Laitta
USGS (+ state agencies)	Donna Myers, Craig Johnston, Dale Robertson, Dave Saad
National Research Council of Canada	Ivana Vouk, Martin Serrer, Richard Burcher
Environment Canada	Erika Klyzsejko, Craig McCrimmon
Agriculture & Agri-Food Canada	Jason Vanrobaeys, Pamela Joosse
Manitoba Conservation and Water Stewardship	Elaine Page, Justin Shead, Sharon Gurney
Statistics Canada	Mark Henry, Francois Soulard
Saskatchewan Water Security / Environment	O.S.(Arasu) Thirunkavukkarasu, Pam Minifie

Red-Assiniboine Model: Four Key Datasets

Red-Assiniboine SPARROW Nutrient Models: Calibration (observed vs predicted flux)

Red-Assiniboine SPARROW Nutrient Models: Calibration *** Preliminary Results ***

Red/As	siniboine Phosphorus SPARROW Model			
Phosphorus Sources		Coefficient	P value	
	Agriculture (fertilizer plus manure)	0.011	0.003	
	Point Sources	1.000	•	
	Forest and Wetlands	6.016	0.033	
	Channels (Medium sized 5-50 cfs)	0.070	0.040	
Land-to-Water Delivery				
	Precipitation	0.070	0.000	
Decay				
	Reservoirs	5.734	0.029	
Model Statistics				
	RMSE	0.489		
	Adj r2	0.915		
	Yield R2	0.815		
	Ν	104		


**Note: Point sources not estimated by model

Red-Assiniboine SPARROW Nutrient Models: Calibration *** Preliminary Results ***

Coefficient	P value		
0.032	0.004		
1.000	•		
0.032			
Land-to-Water Delivery			
0.014	0.000		
-0.573	0.000		
Decay			
0.046	0.393		
1.809	0.151		
Model Statistics			
0.44			
0.93			
0.876			
75			
	Coefficient 0.032 1.000 0.032 0.032 0.032 0.014 0.014 0.014 0.0573 0.046 1.809 0.046 1.809 0.44 0.93 0.876		

**Note: Point sources and atmospheric deposition not estimated by model

SPARROW N and P Models *** Preliminary Results ***

What's Next for Red-Assiniboine SPARROW Modelling?

- Technology training and transfer to interested agencies and organizations
- Updating the "base" year from 2002 to 2012
- Comparing SPARROW model output with other models being applied in the basin (e.g. SWAT, HSPF)
- Geographic expansion to include neighbouring watersheds

Thank you...questions?

Dr. Glenn Benoy benoyg@ottawa.ijc.org

SPARROW http://water.usgs.gov/nawqa/sparrow/ (Fact Sheet, FAQs)

National Research Council Canada Conseil national de recherches Canada